第七屆原住民雲端科展研究 步步驚喜

編號:yabit2015016

團隊名稱:蛇麼才會讚

成員:鄭妤婷、高昱

指導老師: 江明達、姚志成、鄭俊銘

摘要

百步蛇圖騰作為一種原住民的藝術呈現方式,是來自原住民族文化對自然事物觀察的實踐。相對於原住民在藝術方面取得極高的成就,團隊發現很少有人探討原住民文化中的數學內涵。研究團隊嘗試以數學的觀點來檢視這些作品,首先從實際製作百步蛇作品開始切入,隨著我們不斷修正百步蛇圖紋的設計方式,團隊不斷的發掘出百步蛇圖騰中的數學元素,例如三角形、菱形、方形、圓形..等等。這些具象的數學實體經過簡化、合併、測量、數據分析、證明的過程之後,團隊發現這些優美的工藝作品中可以找到很多令人驚喜的數學內容,例如,面積的性質、圓的性質、相似形的性質、對稱圖形的性質、比例的性質、不等式的性質…等等,其中最令團隊興奮的是,我們在資料分析中找到百步蛇圖騰和數學常數π的連結。

壹、研究動機

百步蛇的圖騰紋飾在<u>排灣族</u>的工藝製品當中相當常見,如果將百步蛇背上的花紋加以抽離、簡化,可以找到三角形、菱形、方形、網狀紋等幾何圖形。研究團隊覺得百步蛇背部的紋飾,與圓面積圖形的展開、拼合後的圖形,在外觀上具有某種程度的相似。於是嘗試對百步蛇圖騰中背部的三角形紋飾進行分析、探討,希望能找到兩者之間的關聯性。我們認為,原住民工藝作品除了藝術方面的美學觀點之外,或許可以嘗試找出隱藏在這些藝術品中深刻的數學內涵。當工藝品中的數學原理、性質被解讀出來之後,或許大家看待原住民文化將會有另外一種不同的感受!

貳、研究目的

- 一、找出百步蛇圖騰中的幾何元素。
- 二、自行設計百步蛇圖騰。
- 三、百步蛇圖騰中圖案的變化與規律。
- 四、找出百步蛇圖騰和圓周率π的連結。

參、研究方法

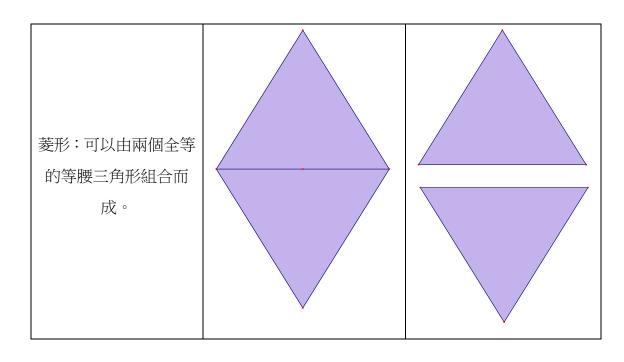
本研究採用電腦解析法與實作法並行的方式進行。首先,除了讓原住民同學回部落作實際的觀察和紀錄百步蛇的作品;此外,我們還透過網路找到相關百步蛇圖騰的照片,找出出現在百步蛇圖騰作品上的幾何元素。然後我們嘗試自行設計、組裝百步蛇的簡易模型、從實際的操作中找出研究的方向;最後利用幾何畫板(GSP)、EXCEL 軟體的協助,把電腦上繪製的各式各樣的圖案,計算出圖形資料的各項數據,並進行資料分析,畫出統計圖….等等。找出百步蛇圖騰中,圖案面積的變化狀況,以及百步蛇圖騰如何和圓周率 π 產生連結。

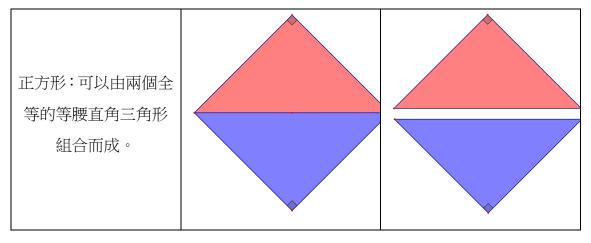
肆、研究過程

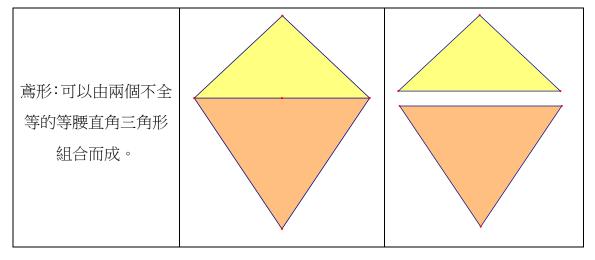
本研究一開始先從確認研究主題著手,原住民的百步蛇圖案是很具體的藝術作品;然而,要自其中抽離出具有數學內涵的主題,對我們而言仍然是一個不小的挑戰!

一、研究網路上的百步蛇圖案

藉著研究網路上的百步蛇圖案,我們找出圖騰的特色及所包含的幾何圖形。確認百步蛇圖案的基本構成元素為等腰三角形、菱形、正方形、鳶形、圓形、S形。經過仔細分析後,我們發現百步蛇背部的圖案其實可以簡化為三角型的組合圖形! 圓形和S形主要是蛇身的形狀,它的形狀類似扇形,卻又比扇形複雜,是比較難處理的圖案形式。我們把找到的基本三角形幾何元素展示如下:





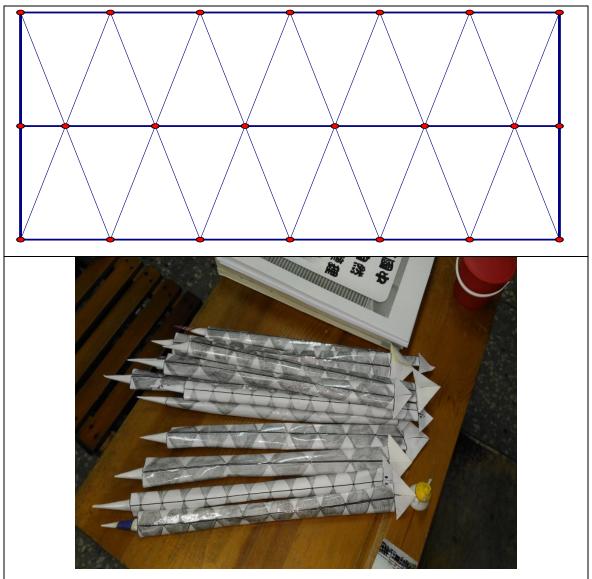


二、自行設計百步蛇背部的圖紋

為了能夠對百步蛇背部的圖紋有更進一步的了解,研究團隊嘗試自行用紙張來 設計百步蛇背面的紋飾,並製作出簡易的百步蛇模型;為了能夠快速聚焦於幾何內 容上面,我們在設計圖騰時做了一些簡化的設定:例如蛇身的部分只採用長方形的 展開圖,著色後再將其捲成圓柱形的蛇身,頭和尾巴的部分則另外製作,然後再另 外組合加入…。

第一次設計時,因為沒有考量到預留蛇腹部的空間,組合之後的模型感覺怪怪的, 很多背部的三角形圖案都跑到腹部,算是一個小小失敗的嘗試!

第二次設計時,除了考慮預留腹部的空間之外,也留下捲成圓柱狀後黏貼的空間, 成品看起來比第一次的狀況進步多了!

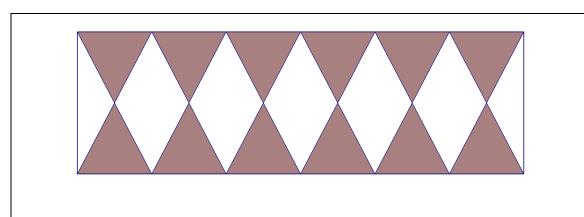


三、百步蛇背部圖案面積的變化

研究團隊經過實際設計百步蛇背部圖案的過程之後,對於百步蛇背面圖案的模式有了比較深刻的印象。基本上,圖紋皆是由不同的等腰三角形重複組合而成。

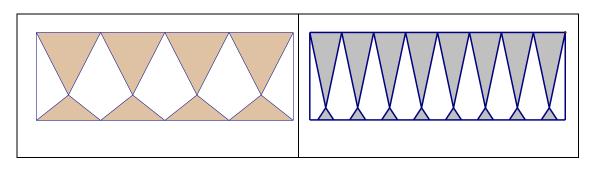
(一)最常見的設計是對稱形式圖案:

在這種設計模式下,圖形呈現的是上下對稱、左右對稱的線對稱圖形。因為圖形 有兩個互相垂直的對稱軸,整體感覺十分的穩重,視覺效果很不錯。我們看到的 百步蛇圖騰設計,大部分都是採用這種形式的設計。此時,圖形紋路著色部分面 積佔全部長方形面積的 $\frac{1}{2}$ 。



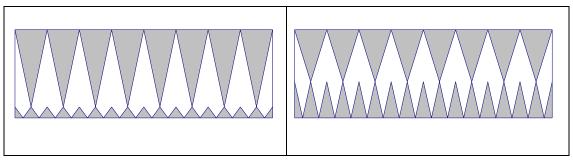
(二)非上下對稱的設計也出現在圖騰的藝術作品中:

在這種設計模式下,圖形呈現的是只有左右對稱的線對稱圖形,圖形只有一個對稱軸。在這種設計模式下,大部分的作品會刻意加大上下兩個等腰三角形的的比例差距,同時增加等腰三角形的數目。此時,圖形紋路著色部分面積佔全部長方形面積的 $\frac{1}{2}$ 。



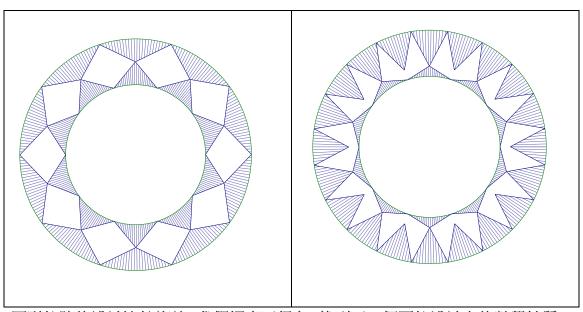
(三)上下三角型數目不相同的特殊設計:

在這種設計模式下,上下的三角形數目並不相等。圖形呈現的仍然是左右對稱的線對稱圖形。在這種設計模式下,如果上方和下方等腰三角形的比例差距不大時,容易出現視覺上的擾亂(如下右圖),使觀賞者很不容易的聚焦在三角形的圖形紋路上。此時,圖形紋路著色部分面積佔全部長方形面積的 $\frac{1}{2}$ 。

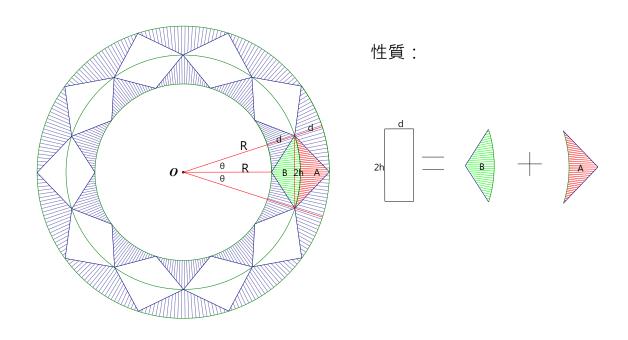


(四)百步蛇身體部分採用圓形(S形)的設計:

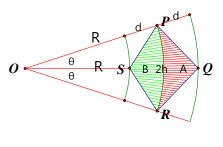
之前為了方便自行製作百步蛇的實體,幾乎是將長方形捲成圓柱來製作百步蛇。 然而,實際觀察百步蛇圖騰的設計,其實蛇身的部分大部分是圓形或 S 形的設計, 研究團隊發現,這樣的設計可以讓繪製在平面上圖形,經過眼睛產生的錯覺後, 產生類似 3D 蛇身的視覺效果!



圓形紋路的設計比較複雜,我們探索了很久,找到了4個圖紋設計上的數學性質。 1.



面積A=鳶形OPQR - 扇形OPR
=
$$\frac{1}{2}$$
(R+2d)·2h - $\frac{2\theta}{360}$ ·(R+d)²·π
=(R+2d)·h - $\frac{\theta}{180}$ ·(R+d)²·π



面積B=扇形OPR - 四邊形OPSR
$$\frac{2\theta}{360} \cdot (R+d)^2 \cdot \pi - \frac{1}{2} \cdot R \cdot 2h$$

$$= \frac{\theta}{180} \cdot (R+d)^2 \cdot \pi - R \cdot h$$

$$= \frac{\theta}{180} \cdot (R+d)^2 \cdot \pi - (R+2d) \cdot h + 2dh$$

$$= d \cdot 2h - [(R+2d) \cdot h - \frac{\theta}{180} \cdot (R+d)^2 \cdot \pi]$$

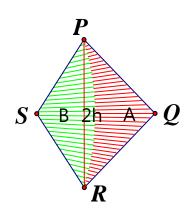
$$= d \cdot 2h - A$$

這個性質的發現其實讓研究團隊感到很興奮,原本我們對於圓形這種圖紋設計上的數學是一籌莫展的,然而找到了這個性質之後,大家似乎都振奮起來。透過計算之後,可以發現兩個切割圖形 A、B,竟然可以組合成一個長方形。這是一開始從圖形上沒有看出來的性質。這也讓研究開始進入另一個階段。大家開始計算圖形上各種長度、面積、弧長、角度…等等數據,嘗試發現新的數學性質。

再度檢視這個圖形之後,可以發現區域 A 和區域

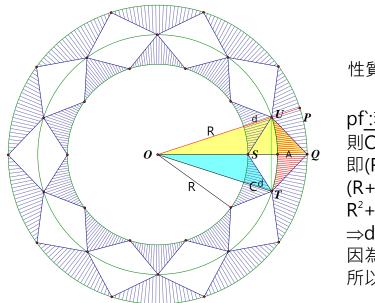
B 合併後的圖形根本上是一個鳶形。因為, $\overline{PS}=\overline{RS}$ 且 $\overline{PQ}=\overline{RQ}$;又對兩對角線的長度 $\overline{SQ}=2d$ 、 $\overline{PR}=2h$ 。所以區域 A 面積加區域 B 的面積=

$$\frac{1}{2} \cdot \overline{SQ} \cdot \overline{PR} = \frac{1}{2} \cdot 2d \cdot 2h = d \cdot 2h$$



雖然,從另外一個角度看這個問題後,簡單的真相之後讓我們有些失望,但是整個研究不再是茫然無頭緒的狀態,求知的心態也已經被引發了,大家似乎有了許多的靈感,整體感覺似乎是找到了開門的鑰匙一般,慢慢進入了研究的大廳。

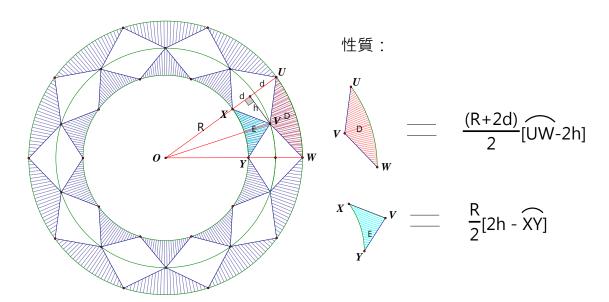
2.



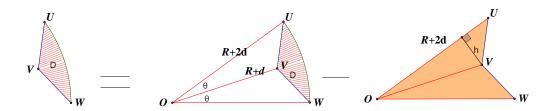
性質:區域A和區域C不相似

pf:若 Δ QUO~ Δ SOT__ 則OU:OQ=OS:OT 即(R+d):(R+2d)=R:(R+d)= (R+d)²=R(R+2d) R²+2Rd+d²=R²+2Rd \Rightarrow d²=0(不合) 因為 Δ QUO和 Δ SOT不相似 所以區域A和區域C不相似

乍看之下,區域 A 和區域 C 長的很像,研究團隊一開始想證明他們是相似圖形,然而最後卻證明出兩者並不相似,純粹是視覺上的錯覺而已。 3.



這個性質找出了面積和弧長之間的連結!

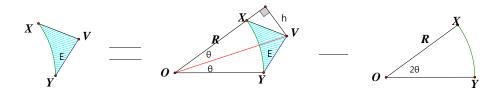


面積D=扇形OUW - 四邊形OUVW

$$= \frac{2\theta}{360} \cdot (R+2d)^{2} \cdot \pi - 2 \cdot \frac{1}{2} \cdot (R+2d) \cdot h$$

$$= (R+2d) \left[\frac{2\theta}{360} \cdot (R+2d) \cdot \pi - h \right] = \frac{(R+2d)}{2} \left[\frac{2\theta}{360} \cdot 2(R+2d) \cdot \pi - 2h \right]$$

$$= \frac{(R+2d)}{2} \left[\widehat{UW} - 2h \right]$$



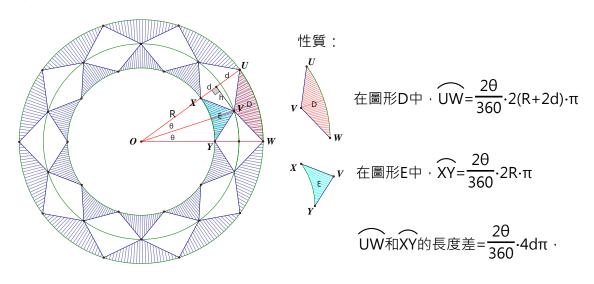
面積E=四邊形OXVY - 扇形OXY

$$=2 \cdot \frac{1}{2} \cdot R \cdot h - \frac{2\theta}{360} \cdot R^2 \cdot \pi$$

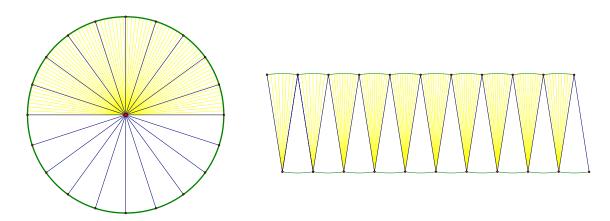
$$=R[h - \frac{2\theta}{360} \cdot R \cdot \pi] = \frac{R}{2}[2h - \frac{2\theta}{360} \cdot 2R \cdot \pi]$$

$$= \frac{R}{2}[2h - \widehat{XY}]$$

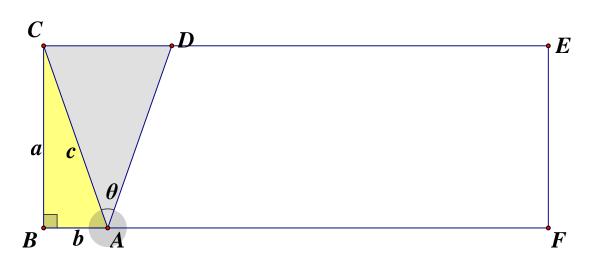
4.



當圓的半徑差 $d = \frac{R}{2}$ 時, $\widehat{CW} = 2\widehat{XY}$,這性質和圖案的設計的視覺效果有關!



學習圓面積公式時,我們進行過一個活動:把一個圓從圓心進行等角度切割後,將切割出來的扇形重新排列後,可以形成一個近似的平行四邊形的圖形。把這個四邊形的長邊和短邊相除後發現,如果圓心角越小,它的比值就越接近圓周率π(3.14);這個活動的過程和結果是如此的有趣,它深深的銘記在我們的腦海中。因此,當我們自行設計百步蛇背部圖紋時,這類似的風格喚醒了之前的記憶。畢竟把圓重新組合成類平行四邊形時,這時的外觀、形狀和我們之前探討的設計頗有雷同之處。當我們想在百步蛇的圖形紋路上找出一些數學性質時,讓我們不禁馬上聯想到,百步蛇圖騰上的圖案,說不定隱藏著圓周率π的內涵。



我們用來設計百步蛇圖騰的是一個任意長方形,長和寬的比顯然和圓周率 π 扯不上關係;因此,我們必須先來找找看,圓周率 π 會出現在甚麼樣的比值上呢?

回到我們之前長方形→圓柱的蛇身設計構造中,在這裡有 2 個很明顯的三角形:直角 \triangle ABC、等腰 \triangle ACD。而且很明顯的, \triangle ACD的面積=2 \triangle ABC的面積。因為 \triangle ABC是直角三角形,把畢氏定理的思考模式應用到 \triangle ABC的圖形上,我

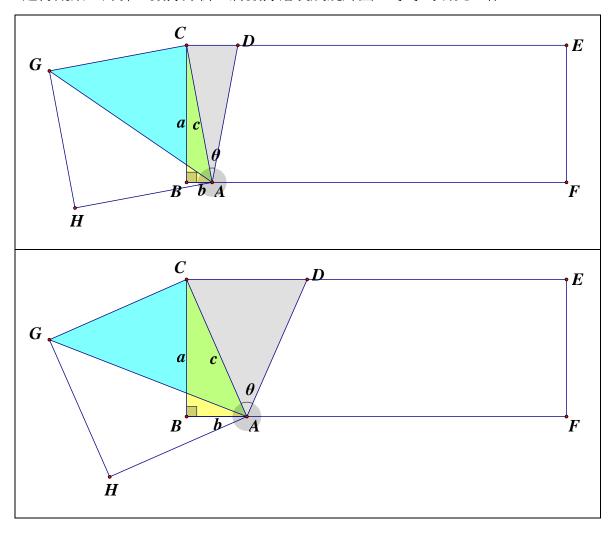
們以 \overline{AC} 為一邊,向內做出一個正方形 ACGH。

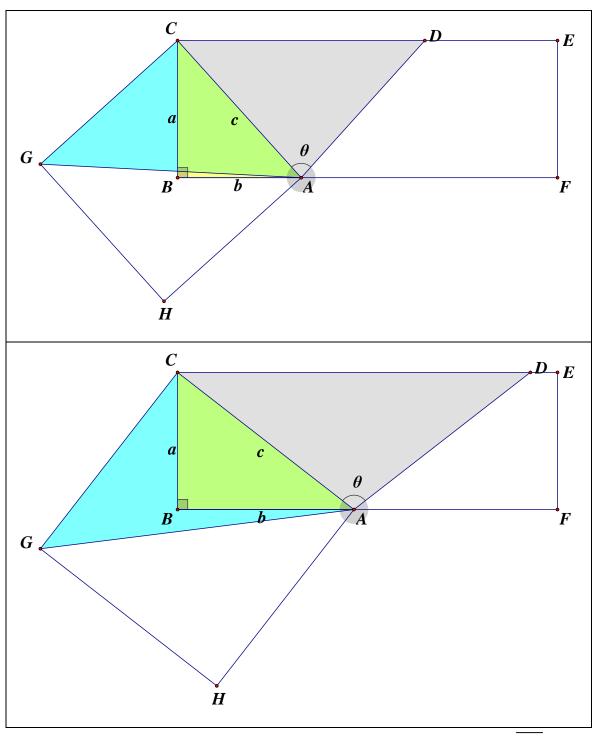
經過這樣的操作之後,有4個變量是我們感到興趣的:

- 1. $\triangle ACG(=\frac{1}{2}$ 正方形 ACGH)的面積 2. $\triangle ACD$ 的面積(基本紋路設計)

- 3. \overline{AC} 和 \overline{AD} 的夾角 θ
- 4. D點的位置。

我們將利用幾何畫板(GSP)、EXCEL 這兩個軟體作為研究工具,針對這4個變量 進行觀察、計算、數據分析、將數據繪製成統計圖…等等的研究工作。





從上面的一系列圖形的變化中可以發現,隨著 D 點越靠近 E 點時, \overline{AC} 和 \overline{AD} 的夾角 θ 會變大,而 $\triangle ACG(=\frac{1}{2}$ 正方形 ACGH)的面積、 $\triangle ACD$ 的面積也跟著變大。不過,這裡還看不出來和圓周率 π 的連結。

接著,我們利用幾何畫板 GSP 這套軟體來度量、計算 \overline{AC} 和 \overline{AD} 的夾角 θ 、 $\triangle ACG(=\frac{1}{2}$ 正方形 ACGH)的面積、 $\triangle ACD$ 的面積….等數據;然後,再將這些數

據導入 EXCEL 程式中進行分析,希望能藉由數據資料的幫助,找到這些變動數值中,是否隱藏甚麼有趣的數學性質。

(一) 計算 \triangle ACD 的面積和 \triangle ACG(= $\frac{1}{2}$ 正方形 *ACGH*)的面積的比值

1.從下表中發現,隨著 D 點慢慢往 E 點靠近時, \triangle ACD 的面積和 \triangle ACG 的面積的比值會慢慢變大,越來越靠近 1,然後再從最高點慢慢往下降。圓周率 π 有可能出現在這裡嗎?團隊研究後發現這裡出現的性質並不是我們所期待的圓周率 π ;事實上,面積的比值先變大,然後再慢慢變小的有趣現象,其實只是不等式的一個基本性質。也就是算術平均數 \ge 幾何平均數這個性質!

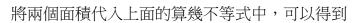
Pf:

對任意大於、等於 0 的兩數 A、B

$$\frac{A+B}{2} \ge \sqrt{AB}$$
 (算幾不等式)

因為, \triangle ACD 面積=2 \triangle ABC 面積= $a \cdot b$

根據畢氏定理,
$$\triangle ACG$$
 面積 $=\frac{1}{2}(a^2+b^2)$,



$$\frac{1}{2}(a^2+b^2) \ge \sqrt{a^2b^2} = ab \quad \text{fill}$$

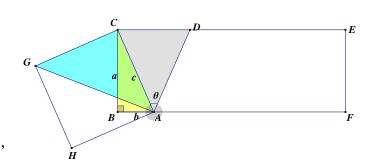
△ACD面積:△ACG面積

$$= \frac{a \cdot b}{\frac{1}{2}(a^2 + b^2)} \le 1$$

最特別是,當 a=b時, \triangle ACD 的面積和 \triangle ACG 的面積的比值=1。這也證明了數資料中面積比值最大為1的猜測。

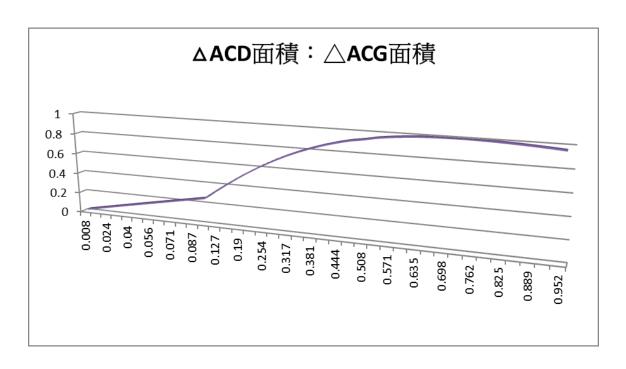
此時, \triangle ABC 是一個等腰直角三角形;而百步蛇基本紋路設計中的三角形 \triangle ACD, \overline{AC} 和 \overline{AD} 的夾角 θ (= \angle CAD)= 90° 。

2.隨著 D 點越來越往 C 點靠近,因為直角 \triangle ABC 中邊長 b越來越小,所以直角 \triangle ACD 的面積也跟著越來越小,而此時 \triangle ACG 的面積反而變動越來越小;從



表格上的資料看來,直角△ACD的面積和△ACG的面積的比值越來越靠近0。

CD : CE 的比值	△ACG 面積	△ACD 面積	△ACD 面積:△ACG 面積的比值
0.008	12.7707	0.2807	0.021980001
0.024	12.783	0.842	0.065868732
0.04	12.8077	1.4034	0.109574709
0.056	12.8447	1.9648	0.152965815
0.071	12.8941	2.5261	0.195911308
0.087	12.9558	3.0875	0.238310255
0.127	13.164	4.4909	0.341150106
0.19	13.6576	6.7364	0.493234536
0.254	14.3486	8.9819	0.625977447
0.317	15.237	11.2273	0.736844523
0.381	16.3229	13.4727	0.82538642
0.444	17.6062	15.7182	0.892765049
0.508	19.1869	17.9638	0.936253381
0.571	20.7651	20.2091	0.973224304
0.635	22.6407	22.4545	0.991775873
0.698	24.7137	24.7	0.999445652
0.762	26.9842	26.9454	0.998562122
0.825	29.4521	29.1909	0.991131362
0.889	32.1174	31.4363	0.978793427
0.952	34.9801	33.6818	0.962884612



(二).角度的變動

因為我們是在任意長方形上面進行圖紋的繪製,在寬度不改變的狀況下,如果長

度變大, \overline{AC} 和 \overline{AD} 的夾角 θ 可以變動的範圍就會跟著變大。在前面提到的圓形切割重新排列中,當每個小扇形的圓心角越小時,組合而成的平行四邊形邊長比就會越來越接近圓周率 π 。因此,這裡拿來做為類比計算的變數是 \angle

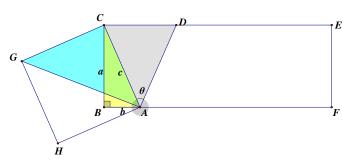
CAD 和 180°的比值,從下面的圖形中可以看到:

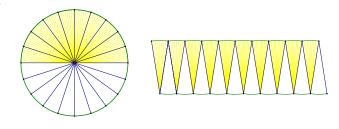
1.隨著 D 點越靠近 E 點, \angle CAD 的值越來越

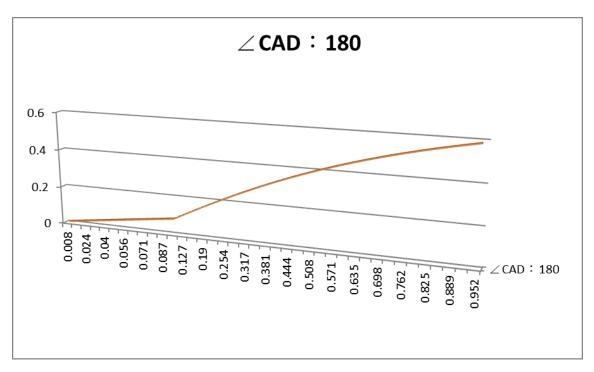
大, ∠CAD: 180 的比值也越來越大。

2.隨著 D 點越靠近 C 點, ∠CAD 的值越來越

小,∠CAD:180的比值也越來越小。







(三).找出常數圓周率 π

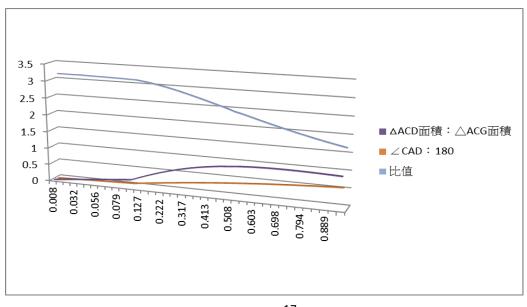
面積比、角度比的計算中只發現到:隨著 D 點的位置變動,面積比、角度比兩個比值只有同時出現變大(小)的情形而已,並沒有發現和圓周率 π 的連結。突然,一個念頭湧上心頭,既然他們同時變大(小),會不會兩者相除之後能夠趨近

於某個數值呢?於是,當我們把 $\frac{\triangle ACD}{\triangle ACG}$ 的值拿來和 $\frac{\angle CAD}{180}$ 的值相除之後,果

然驚喜的發現,當 \angle CAD的角度越來越小,也就是隨著 D點越來越靠近 C點時,這兩者的比值會慢慢趨近於圓周率 3.14;這個現象和在前面提到的圓形切割、重新排列時,當扇形的圓心角越小時,邊長比就會越來越接近圓周率 π 的現象類似。

透過了數據的計算,我們雖然找到百步蛇圖騰和圓周率 π 的連結。然而這個會是必然發生的現象嗎?我們把這個發現拿來和老師進行探討。

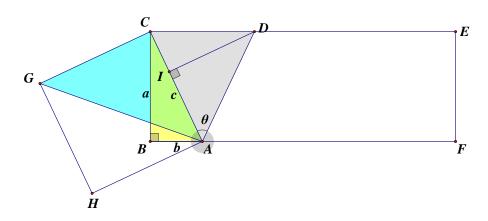
CD : CE 的比值	△ACD 面積:△ACG 面積	∠CAD: 180	比值
0.008	0.021980001	0.007	3.140000157
0.024	0.065868732	0.021	3.136606281
0.04	0.109574709	0.034944444	3.135683245
0.056	0.152965815	0.048888889	3.12884621
0.071	0.195911308	0.062777778	3.120711105
0.087	0.238310255	0.076611111	3.110648722
0.127	0.341150106	0.110833333	3.078046072
0.19	0.493234536	0.164333333	3.001427197
0.254	0.625977447	0.215277778	2.907766207
0.317	0.736844523	0.263666667	2.794606283
0.381	0.82538642	0.309055556	2.6706733
0.444	0.892765049	0.351222222	2.541880873
0.508	0.936253381	0.390277778	2.398941048
0.571	0.973224304	0.426166667	2.28367064
0.635	0.991775873	0.459166667	2.159947454
0.698	0.999445652	0.489388889	2.042232005
0.762	0.998562122	0.517055556	1.931247253
0.825	0.991131362	0.542444444	1.827157366
0.889	0.978793427	0.565666667	1.730336052
0.952	0.962884612	0.587	1.640348572



(四).極限的挑戰

針對百步蛇圖騰和圓周率 π 產生連結的現象,雖然有了數據上的支持,也重畫了各種不同的長方形來進行驗證,我們發現這個性質對任意的長方形而言應該都會成立;但為了能夠有比較嚴謹的數學論證,老師幫忙處理了下面的證明:

1.D 點越來越接近 C 點時, $\frac{\triangle ACD}{\triangle ACG}$ 和 $\frac{\angle CAD}{180}$ 的比值趨近於圓周率 π 。



證明:

作
$$\overline{DI} \perp \overline{AC}$$
 於 I 點,則 \triangle ACD 面積= $\frac{1}{2}c \cdot c \sin \theta = \frac{1}{2}c^2 \sin \theta$

$$\triangle$$
ACG 面積 = $\frac{1}{2}$ 正方形 ACGH 的面積 = $\frac{1}{2}c^2$ 所以,

△ACD面積:△ACG面積

所以
$$=\frac{\frac{1}{2}c^2\sin\theta}{\frac{1}{2}c^2}=\sin\theta$$
 故

$$\triangle ACD$$
面積: $\angle CAD$ 的值 $= \sin \theta : \frac{\theta}{180} = \frac{\sin \theta}{\theta} \cdot 180^{\circ}$

當把
$$\theta$$
轉換成弧度單位時, $\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1$,且 $180^\circ = \pi$ (弧度)

即 D 點越來越接折 C 點時,此時 $\theta \rightarrow 0$ 所以

$$\Delta ACD$$
面積: $\angle CAD$ 的值
$$= \lim_{\theta \to 0} \frac{\sin \theta}{\theta} \cdot \pi = \pi$$

2.長方形的長度 \overline{CE} 越長,且 D 點越來越接近 E 點時,上述的比值會趨近於 0。

證明:

因為 \triangle ACD 面積=2 \triangle ABC 面積= $a \cdot b$

而根據畢氏定理 \triangle ACG 面積 $=\frac{1}{2}(a^2+b^2)$

$$\frac{\triangle ACD 面積}{\triangle ACG 面積}$$

$$= \frac{a \cdot b}{\frac{1}{2}(a^2 + b^2)}$$

當長方形的長度 \overline{CE} 越大,且D點越來越接近E點時,此時 $\theta \to 180^{\circ}$ 且 $b \to \infty$

$$\frac{\triangle ACD 面積}{\triangle ACG 面積} : \frac{\angle CAD}{180} 的值$$

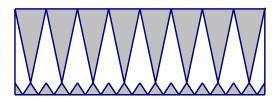
$$= \lim_{b \to \infty} \lim_{\theta \to 180^{\circ}} \frac{a \cdot b}{\frac{1}{2}(a^{2} + b^{2})} : \frac{\theta}{180^{\circ}}$$

$$= \lim_{b \to \infty} \lim_{\theta \to 180^{\circ}} \frac{\frac{a}{b}}{\frac{1}{2}(\frac{a^{2}}{b^{2}} + 1)} : \frac{\theta}{180^{\circ}} = 0$$

伍、研究結果與結論

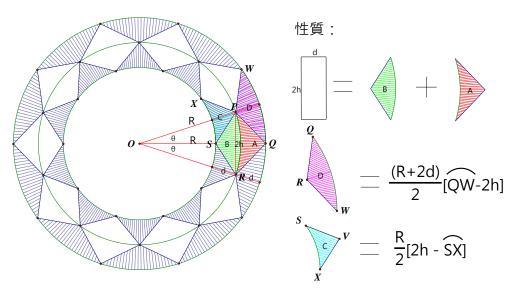
一開始選定百步蛇圖騰作為研究主題之後,其實團隊一開始對這個主題該從哪一個面向進行探討是毫無頭緒的。因此,我們只好從實際製作百步蛇模型開始 起步,藉由不斷修正自己製作的成品,慢慢的自其中找到圖騰中可能蘊含的數學 性質。而這樣的一連串的探索過程讓我們體會到,或許祖先當時製作圖騰的心境 也和我們類似,一開始祖先們並不是想要傳承甚麼高深的數學知識或原理,然而作品中卻將大自然的數學原理深深的內蘊其中。從自然界的美麗事物中可以找到許多蘊含著數學知識的現象,例如向日葵種子的生長螺紋是左旋和右旋的兩組交錯等角螺線。我們認為在原住民的文化傳承中也能找到具有相同概念的作品,也就是這樣的猜想讓我們完成了這篇關於對於百步蛇圖騰的研究。在研究過程中,我們的確在圖紋中找到了不少數學的性質,例如面積的性質、圓的性質、相似形的性質、對稱圖形的性質、比例的性質、不等式的性質…等等,其中最令團隊興奮的是,我們在資料分析中找到百步蛇圖騰和數學常數π的連結。

─.

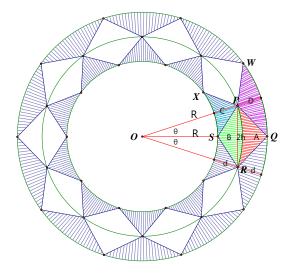


以長方形來作為蛇身的設計 背部圖案為等腰三角形時 此時著色面積為長方形面積的 $\frac{1}{2}$

二.



三.



性質:

區域A和區域C不相似

$$\widehat{QW} = \frac{2\theta}{360} \cdot 2(R+2d) \cdot \pi$$

$$\widehat{SX} = \frac{2\theta}{360} \cdot 2R \cdot \pi$$

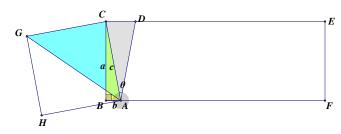
$$\widehat{QW}$$
和 \widehat{SX} 的差距 = $\frac{2\theta}{360} \cdot 4d \cdot \pi$

四.

當D點越來越接近C點時,

 $\frac{\land ACD}{ACG}$: $\frac{\angle CAD}{180}$ 的比值.

這個數字會趨近於圓周率π。



五.隨著 D 點越來越靠近 E 點, $\frac{\triangle ACD}{\triangle ACG}$ 的值會先變大,越來越靠近 1、接著等於

1,然後再慢慢從最大值1往下降。

陸、參考資料

- 1《比與比例式》:國中數學課本第二冊第三章,康軒出版社,民國一零四年。
- 2《平方根與勾股定理》:國中數學課本第三冊第二章,康軒出版社,民國一零四年。
- 3《簡單的幾何圖形》:國中數學課本第四冊第二章,康軒出版社,民國一零四年。
- 4《相似形》:國中數學課本第五冊第一章,康軒出版社,民國一零四年。